
git – the incomplete introduction

git
the incomplete introduction

René Schwietzke, Xceptance, 2013
v 0.95

2git – the incomplete introduction

Please don't...

Please don't ask for any mapping of SVN to Git
commands. Git is different and you cannot simply

use the same approach and commands.

Of course you can, but people will hate you forever.

3git – the incomplete introduction

Some (de)motivation first

● Most of things are borrowed
● Command line only first
● Yes, you can mess things up
● Don't be scared!
● Be scared and respect the tool!
● Not every term will be introduced
● Google is your friend
● Go http://git-scm.com/ and use the book!
● Share this deck, it is CC-BY-SA licensed

http://git-scm.com/

4git – the incomplete introduction

Why are we so... excited?

● Subversion is ok – Git is better
● Commit often, very often...
● Everything is local
● Everything is distributed
● Cheap branching
● Data assurance
● Fast
● Everything has a history... P.S That is going to be important later on

The swiss army knife – you just have to know how to use it.

5git – the incomplete introduction

What is that GIT/git/Git thing?

● Distributed Version Control System (DVCS)
● Open Source
● Started by Linus T. to aid kernel development
● Used by a lot of projects
● Git is not GitHub!

Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

6git – the incomplete introduction

Git takes care of...

● Content: by protecting each commit with SHA-1
● History: by keeping relations
● Merges: by using the history
● Speed: by using snapshots and not diffs

7git – the incomplete introduction

Distributed vs. Centralized

Centralized Distributed







 



8git – the incomplete introduction

How things are stored

● Snapshots and not file differences

9git – the incomplete introduction

Lifetime phases of data

● Unmodified – you did nothing
● Modified – you changed something
● Staged – you prepared for a commit
● Committed – you made changes permanent
● Pushed – you shared your changes

You have to tell Git that you want a file to be included in the next
commit. Git is opt-in!

The thingy were Git keeps your soon to be committed data is called
the staging area.

10git – the incomplete introduction

What is a commit?

● A commit is a snapshot of files
● Keeps references to its parents
● Has a unique SHA-1 over the content

Local ~$ git show --pretty=raw 28d88a4
commit 28d88a44d6640a7ab89aa9b0db0597e36b50c831
tree 55335193a182bc9e2850d00700ff482896f95c0f
parent bcbb62be834ca0abd4b81952e612bf64f57bedb2
author Kati Smith <kati@foobar.net> 1379449534 +0200
committer Kati Smith <kati@foobar.net> 1379449534 +0200

 Fallback code added

Local ~$ git show --pretty=fuller 0da605d
commit 0da605df6974eaeef472355936b9fc15912a6211
Merge: a6c4011 28d88a4
...

11git – the incomplete introduction

Data assurance and commits

● Git does not have a counter
● Git has data assurance

● Changes in the past will change anything from that
point in time

● A commit knows its predecessors
● A commit has a unique SHA-1
● Any change to a commit changes the SHA-1
● Any new SHA-1 is something new despite the

same content (see rebase)

12git – the incomplete introduction

What is a branch?

● A branch is just a pointer to a commit that is the
branch head

● A branch contains everything that can be reached
by following the parent relations

● A branch is like a parallel universe
● Each branch has a name

B

A

git – the incomplete introduction

Get your hands gitty
We play with git

14git – the incomplete introduction

Get your hands gitty

● Local repo first
● Learn the basics
● Clone a remote repo
● Some magic around shared code

Local ~$ git –-version
git version 1.8.3.4

15git – the incomplete introduction

git init

● Creates a new repository right here
● Never ever play with .git subdirectory

Local ~$ mkdir mytest
Local ~$ cd mytest
Local ~mytest$ git init
Initialized empty Git repository in ~mytest/.git/
Local ~mytest$ ls -la
total 0
drwxrwxr-x 3 tfontane tfontane 60 Jul 27 20:56 .
drwxrwxr-x 7 tfontane tfontane 200 Jul 27 20:56 .git

16git – the incomplete introduction

git init

File Sys

git

HEAD

?

17git – the incomplete introduction

git config

● Tell something about you
● Git identifies you but does not authenticate!
● Stash/GitLab/GitHub do the authentication

Local ~$ git config user.name "Rene Schwietzke"
Local ~$ git config user.email "emailme@foobar.com"

Local ~$ git config --global user.name "Rene Schwietzke"
Local ~$ git config --global user.email "emailme@foobar.com"

mailto:emailme@foobar.com

18git – the incomplete introduction

git status - add a little

● Create a file and fill it
● Check the status
● git status is your friend!

Local ~mytest$ vi foo.txt
Local ~mytest$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
foo.txt
nothing added to commit but untracked files present (use "git add" to
track)

19git – the incomplete introduction

Modified

File Sys

git

HEAD

?

foo.txt

20git – the incomplete introduction

git add / git status

● Stage the file to make it known to git
● Git will snapshot the file
● Check the state

Local ~mytest$ git add foo.txt
Local ~mytest$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: foo.txt
#
Local ~mytest$ git add . # all recursive
Local ~mytest$ git add * # all in current dir

21git – the incomplete introduction

Staged
master

File Sys

git

HEAD

?

foo.txt

foo.txt

22git – the incomplete introduction

git commit – engrave it in stone

● Make your changes permanent
● Commits only what you staged
● No commit comment – no fun!

Local ~mytest$ git commit -m “Just started”
[master (root-commit) c6a0313] Just started
 1 file changed, 2 insertions(+)
 create mode 100644 foo.txt
Local ~mytest$ git status
On branch master
nothing to commit, working directory clean
Local ~mytest$

23git – the incomplete introduction

Committed
master

File Sys

git

HEAD

c6a0313

foo.txt

24git – the incomplete introduction

Play it again Sam!
master

File Sys

git

HEAD

c6a0313

foo.txt

64177f

25git – the incomplete introduction

git branch / git checkout

● Cheap and fast
● Your playground to try things, finish things, and

share things, all that without disturbing others
● Use a branch, Luke!

Local ~mytest(master)$ git branch mybranch1; git checkout mybranch1
Local ~mytest(master)$ git checkout -b mybranch1
Switched to a new branch 'mybranch1'
Local ~mytest(mybranch1)$ git status
On branch mybranch1
nothing to commit, working directory clean
Local ~mytest(mybranch1)$ git branch
 master
* mybranch1
Local ~mytest(mybranch1)$ git checkout master
Switched to branch 'master'
Local ~mytest(master)$ git checkout mybranch1
Switched to branch 'mybranch1'

26git – the incomplete introduction

Branch View
master git

HEAD

c6a0313 64177f

mybranch1

HEAD

27git – the incomplete introduction

Modify / Add / Commit
master git

c6a0313 64177f

mybranch1

HEAD

HEAD

7a1198e

28git – the incomplete introduction

Back to master and new file
master git

HEAD

c6a0313 64177f

mybranch1

7a1198e

HEAD

407084b

29git – the incomplete introduction

git rebase on mybranch1

● Prepare mybranch1 for merge into master
● Resolve conflicts in the branch
● Rebasing means rewriting of history

Local ~mytest$ git checkout mybranch1
Local ~mytest$ git rebase master
First, rewinding head to replay your work on top of it...
Applying: Longer sentence
Local ~mytest$ git log --oneline --decorate
703e3f7 (HEAD, mybranch1) Longer sentence
407084b (master) First readme version
641771f Again
c6a0313 Just started

30git – the incomplete introduction

We rebased
master git

HEAD

c6a0313 64177f

mybranch1

7a1198e

HEAD

407084b

703e3f7

31git – the incomplete introduction

git merge into master

● Get your changes into the master
● Should run great because you rebased first
● Git will remember that the branch was merged
● Git will remember the content aka the SHA-1s

Local ~mytest$ git checkout master
Local ~mytest$ git merge mybranch1
Updating 407084b..703e3f7
Fast-forward
 foo.txt | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
Local ~mytest$ git log --oneline --decorate
703e3f7 (HEAD, mybranch1, master) Longer sentence
407084b First readme version
641771f Again
c6a0313 Just started

32git – the incomplete introduction

We merged via fast-forward
master git

HEAD

c6a0313 64177f

mybranch1

407084b 703e3f7

HEAD

33git – the incomplete introduction

That was normal but not cool

● We fast-forwarded and lost merge info
● Fast-forward makes it look like a direct commit
● Will retain all single commits and smuggle them

into the target branch
● Hard to figure out what was going on
● Use --no-ff all the time when merging
● Fast-forwarding is great for rebasing but not for

merging (exceptions apply)

34git – the incomplete introduction

Prepare again
master git

HEAD

407084b

mybranch2

HEAD

703e3f7

750ba6b

35git – the incomplete introduction

Prevent fast-forwarding

● Use --no-ff all the time

Local ~mytest$ git checkout master
Local ~mytest$ git merge --no-ff mybranch2
Merge made by the 'recursive' strategy.
 lion.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 lion.txt
Local ~mytest$ git log --oneline --decorate --graph
* f223150 (HEAD, master) Merge branch 'mybranch2'
|\
| * 750ba6b (mybranch2) The new file
|/
* 703e3f7 (mybranch1) Longer sentence
* 407084b First readme version
* 641771f Again
* c6a0313 Just started

36git – the incomplete introduction

Perfect merge via --no-ff
master git

HEAD

407084b

mybranch2

HEAD

703e3f7

750ba6b

f223150

37git – the incomplete introduction

Remove merged branches

● Always clean up never not continue
● Merging means finishing up!
● More reasons: see reverting a merge

Local ~mytest$ git branch -d mybranch1
Deleted branch mybranch1 (was 703e3f7).
Local ~mytest$ git branch -d mybranch2
Deleted branch mybranch2 (was 750ba6b).
Local ~mytest$ git log –-oneline –-decorate –-graph
* f223150 (HEAD, master) Merge branch 'mybranch2'
|\
| * 750ba6b The new file
|/
* 703e3f7 Longer sentence
* 407084b First readme version
* 641771f Again
* c6a0313 Just started

38git – the incomplete introduction

Clean up after merges
master git

407084b

HEAD

703e3f7

750ba6b

f223150

git – the incomplete introduction

The small helpers
Other commands you might need

40git – the incomplete introduction

git rm – remove stuff

● git rm removes and stages
● Register already deleted files with git rm

Local ~mytest$ git rm lion.txt
rm 'lion.txt'
Local ~mytest$ git status
On branch remove1
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: lion.txt
#
Local ~mytest$ rm readme.txt
Local ~mytest$ git rm readme.txt

41git – the incomplete introduction

git mv – rename stuff

● git mv renames/relocates and stages
● Recommended but not required
● git tracks content not files so it guesses external

moves based on content similarity
Local ~mytest$ git mv readme.txt README
Local ~mytest$ git status
On branch remove1
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: readme.text -> README
#
Local ~mytest$ git commit -m “Adjusted to GitHub style”
[remove1 72f240a] Adjusted to Github style
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename readme.text => README (100%)

42git – the incomplete introduction

git diff – what changed?

● To see changes locally: now vs. HEAD

Local ~mytest$ change a file, e.g. README
Local ~mytest$ git diff
diff --git a/README b/README
index a3a48b3..81db0bb 100644
--- a/README
+++ b/README
@@ -1 +1 @@
-My readme and it is more
+My readme and it is more.
Local ~mytest$ git diff --word-diff
diff --git a/README b/README
index a3a48b3..81db0bb 100644
--- a/README
+++ b/README
@@ -1 +1 @@
My readme and it is [-more-]{+more.+}
Local ~mytest$ git diff README
...

43git – the incomplete introduction

git diff – what changed?

● To see changes of commits

Local ~mytest$ git log <you know the rest>
* 079aaab (HEAD, origin/master, master) master 3
* 7ba35ee master 2
* cad3fee master 1
Local ~mytest$ git show 079aaab
What changed with 079aaab
Local ~mytest$ git diff 7ba35ee
What changed since 7ba35ee aka the change introduced by 079aaab
Local ~mytest$ git diff 703e3f7 README
Same as before, but limited to a specific file
Local ~mytest$ git log --since=2.weeks readme.txt
List all commits that touched readme.txt in the last two weeks.
Local ~mytest$ git log --since=2.weeks -G Rene
Where 'Rene' was in the changes including removals in the last two weeks.

You can go nuts here. Google it when you need it. It is powerful and allows
basically everything possible to find and identify changes and problems.

44git – the incomplete introduction

git mergetool – conflict solver

● Solve conflicts during rebasing and merging
● Uses the configured tool of your choice

Local ~mytest$ git rebase origin/qa
First, rewinding head to replay your work on top of it...
Applying: Conflict
Using index info to reconstruct a base tree...
M qa/start.txt
Falling back to patching base and 3-way merge...
Auto-merging qa/start.txt
CONFLICT (content): Merge conflict in qa/start.txt
Failed to merge in the changes.
Patch failed at 0001 Conflict
The copy of the patch that failed is found in:
 /tmp/learn_git/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase –abort".
Local ~mytest$ git mergetool
Local ~mytest$ git rebase --continue

45git – the incomplete introduction

git cherry-pick – simply the best

● Rescue commits
● Preserves all data but the SHA-1 because of the

new predecessor
● Good for downstream hotfix merges
● Use to preserve pieces of a dead branch

Local ~mytest (master)$ git checkout -b kirsche
Local ~mytest (kirsche)$ git cherry-pick 56fe781
[tets b8c3f20] New readme file
 1 file changed, 1 insertion(+)

git – the incomplete introduction

Dealing with Oops!
The reason for version control

47git – the incomplete introduction

Forgot something? --amend

● Changes the last commit (when not pushed!)
● Removes old commit, creates new commit

Local ~mytest$ change two files
Local ~mytest$ git commit -m “Updated two files”
Local ~mytest$ git log --stat
* 5cb60ce (HEAD, master) Updated two files
| foobar.txt | 1 +
| 1 file changed, 1 insertion(+)
* 0da605d Merge branch 'oauth.fix'
Local ~mytest$ git add file2.txt
Local ~mytest$ git commit --amend -m “Really updated two files”
Local ~mytest$ git log --stat
* c3ae1b1 (HEAD, master) Really updated two files
| foobar.txt | 1 +
| readme.txt | 1 +
| 2 files changed, 2 insertions(+)
* 0da605d Merge branch 'oauth.fix'

48git – the incomplete introduction

Staged too much?

● Remove from the staging area
● Not very intuitive... sadly enough

Local ~mytest$ git add test.txt
Local ~mytest$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: test.txt
#
Local ~mytest$ git reset HEAD test.txt
Local ~mytest$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
test.txt
nothing added to commit but untracked files present (use "git add" to
track)

49git – the incomplete introduction

Get rid off the last commit

● Kills the last commit without a trace
● Of course, only when not shared yet

Local ~mytest$ git log
* 4db3017 (HEAD, master) Too much, oops
* a0a842d Fine 2
* 99ca82a Fine 1
Local ~mytest$ git reset HEAD~1
Unstaged changes after reset:
M readme.txt
Local ~mytest$ git log
* a0a842d (HEAD, master) Fine 2
* 99ca82a Fine 1

50git – the incomplete introduction

git revert – undo things I

● Reverting means committing reversed content
● Step 1: Identify hash aka revision

Local ~mytest$ git log --oneline --graph --decorate
* 01d9051 (HEAD, master) Cleaner now
|\
| * 72f240a Adjusted to Github style
| * 5a9e51a Redundant file removed
|/
* f223150 Merge branch 'mybranch2'
|\
| * 750ba6b The new file
|/
* 703e3f7 Longer sentence
* 407084b First readme version
* 641771f Again
* c6a0313 Just started

51git – the incomplete introduction

git revert – undo things II

● Step 2: Undo the work with a “negative” commit
● Revert a revert the same way

Local ~mytest$ git revert 5a9e51a
[master 7b6e6cf] Revert "Redundant file removed"
 1 file changed, 1 insertion(+)
 create mode 100644 lion.txt
Local ~mytest$ git log <you know the rest> --stat
* 7b6e6cf (HEAD, master) Revert "Redundant file removed"
| lion.txt | 1 +
| 1 file changed, 1 insertion(+)
* 01d9051 Cleaner now
|\
| * 72f240a Adjusted to Github style
| | README | 1 +
| | readme.text | 1 -
| | 2 files changed, 1 insertion(+), 1 deletion(-)
| * 5a9e51a Redundant file removed
|/
| lion.txt | 1 -
| 1 file changed, 1 deletion(-)
...

52git – the incomplete introduction

git revert – revert a merge

● Merges are reverted like any other commit
● But when you continue to work on it and merge

later, it does not work as expected
● Git does not track the content, but the commits
● When commits are already in the tree, the next

merge with them again makes no difference aka
they are still reverted

● Revert the revert in these cases first

53git – the incomplete introduction

git revert – revert a merge
Local ~mytest (master)$ git log
* 5169844 (HEAD, master) Foo is new
* 35a597f Merge branch 'test1'
|\
| * 52212e1 A change in readme
|/
* bbd0c7b (origin/master) Readme 2

identify predecessor to use
Local ~mytest (master)$ git show 35a597f
Merge: bbd0c7b 52212e1
Author: Peter Meier <r.schwietzke@xceptance2.net>
...
revert 35a597f
Local ~mytest (master)$ git revert -m 1 35a597f
create branch to continue
Local ~mytest (master)$ git checkout -b fix-it
revert the revert in the branch to see original code
Local ~mytest (fix-it)$ git revert 42635ec
fix all the bad stuff and merge
Local ~mytest (fix-it)$ edit, add, commit...
Local ~mytest (fix-it)$ git checkout master
Local ~mytest (master)$ git merge --no-ff fix-it
clean up
Local ~mytest (master)$ git branch -d fix-it

54git – the incomplete introduction

git revert – revert a merge

Local ~mytest (master)$ git log
* 70e18de (HEAD, master) Merge branch 'fix-it', previously test1
|\
| * d980ef0 Fixed the bad stuff
| * b8796e0 Revert of "Revert "Merge branch 'test1'""
|/
* 42635ec Revert "Merge branch 'test1'"
* 5169844 Foo is new
* 35a597f Merge branch 'test1'
|\
| * 52212e1 A change in readme
|/
* bbd0c7b (origin/master) Readme 2

● 42635ec – revert in main branch
● b8796e0 – revert of the revert to continue later
● 70e18de – second merge attempt including fix

55git – the incomplete introduction

git reset/checkout – trash it

● Kill or revert all your uncommitted changes

git rid off all changes
Local ~mytest$ change a file, e.g. README
Local ~mytest$ git reset --hard
HEAD is now at 25f967d ! The was the message.

remove from staging area
Local ~mytest$ change a file
Local ~mytest$ git reset README
Unstaged changes after reset:
M README

get README back to last commited state
Local ~mytest$ git checkout README
Local ~mytest$ git status
On branch master
nothing to commit, working directory clean

git – the incomplete introduction

It is called branching,
not treeing

Do not build trees from your branches

57git – the incomplete introduction

Branches – important to know

● Remember, every commit has at least one parent
● So your branch is based on something
● If you merge your branch to a place you have not

started from, you get everything merged that is
not yet in... not just what you have touched

● Git makes sure that nothing is lost
● A branch is just a pointer!

58git – the incomplete introduction

Branches – the unexpected

?

B C

1 2

A E F

X YW Z CD12

D

59git – the incomplete introduction

Branches – cherry-pick from red

1 2

1' 2'

Local (red)$ git checkout -b get-red-in
Switched to new branch 'get-red-in'
Local (get-red-in)$ git cherry-pick 1 2
Local (get-red-in)$ git checkout green
Switched to branch 'green'
Local (green)$ git merge --no-ff get-red-in -m “Cherry picked the red”
...
Local (green)$ git branch -d get-red-in

git – the incomplete introduction

A small workflow
Just you and git. Local and simple.

61git – the incomplete introduction

Small and quick local workflow

● Practice the workflow in your local world

Local (abranch)$ git checkout master
Switched to branch 'master'
Local (master)$ git checkout -b new-branch

Local (new-branch)$ edit and commit often

Local (new-branch)$ git rebase master
Local (new-branch)$ git checkout master
Local (master)$ git merge --no-ff new-branch -m “Cleaner now”
Removing lion.txt
Merge made by the 'recursive' strategy.
 readme.text => README | 0
 lion.txt | 1 -
 2 files changed, 1 deletion(-)
 rename readme.text => README (100%)
 delete mode 100644 lion.txt
Local (master)$ git branch -d new-branch

git – the incomplete introduction

Let's go remote now
Play with others in the same sandbox

63git – the incomplete introduction

Let's go remote

● Every repository is a complete repo
● Except for unsynced changes with “friends”
● No obligation to use a remote
● More than one remote possible
● No obligation to upload (push) everything
● Only what you want to share
● Only what you have to protect

64git – the incomplete introduction

git clone – get a remote repo

Local ~mytest$ git clone
ssh://git@git0.foobar.net:7999/train/learn_git.git
Cloning into 'learn_git'...
remote: Counting objects: 192, done.
remote: Compressing objects: 100% (160/160), done.
remote: Total 192 (delta 78), reused 0 (delta 0)
Receiving objects: 100% (192/192), 20.35 KiB | 0 bytes/s, done.
Resolving deltas: 100% (78/78), done.
Checking connectivity... done
Local ~mytest$ cd learn_git
Local ~mytest$ git status
* master
Local ~mytest$ git remote --verbose
origin ssh://git@git0.foobar.net:7999/train/learn_git.git (fetch)
origin ssh://git@git0.foobar.net:7999/train/learn_git.git (push)

● Get a remote repo downloaded
● Git automatically sets up tracking

65git – the incomplete introduction

git fetch – get work from others

● Fetches data from remote
● Does not touch your work

Local ~mytest$ git fetch origin
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 4 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From ssh://git0.svc1.foobar.net:7999/train/learn_git
 aa2e115..d85515d qa -> origin/qa
Local ~mytest$ git diff aa2e115..d85515d
diff --git a/qa/start.txt b/qa/start.txt
index 006f308..067ab29 100644
--- a/qa/start.txt
+++ b/qa/start.txt
@@ -1,3 +1,5 @@
 This is beginning of a text.
 It might continue.
 Or it might now.
+I am remote.

66git – the incomplete introduction

git merge/rebase – pull it in

● Works like a local rebase or merge
● Picks the way that fits best
● Merge to make operation visible
● Rebase to just get you updated to latest

Local ~mytest$ git fetch origin
Local ~mytest$ git merge origin/qa
Merge made by the 'recursive' strategy.
 qa/start.txt | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
Local ~mytest$ git rebase origin/qa
First, rewinding head to replay your work on top of it...

67git – the incomplete introduction

git pull – fetch and merge

● Pull is fetch and merge in one command
● There is no --no-ff option, git picks the best way
● So prefer --rebase when content is unpushed

Local ~mytest$ git pull origin mybranch
From ssh://git0.foobar.net:7999/train/learn_git
 * branch mybranch -> FETCH_HEAD
Updating 0d1c02a..974c00d
Fast-forward
 qa/start.txt | 2 ++
 1 file changed, 2 insertions(+)
Local ~mytest$ git pull --rebase origin mybranch

68git – the incomplete introduction

git push – deliver your work

● Deliver your work to a remote destination
● Nothing changes (commit hashes)
● DO NOT CROSS PUSH

Local ~mytest$ branch, edit, commit
Local ~mytest$ git push origin qa
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 377 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)
To ssh://git@git0.foobar.net:7999/train/learn_git.git
 * [new branch] qa -> qa
Local ~mytest$ git log
* 0743e1d (HEAD, origin/qa, qa) QA directory
* d0400d5 (origin/master, origin/HEAD, master) Merge pull request
#12...
...

69git – the incomplete introduction

git push – too slow and you fail

● Someone was faster
● You have to get the remote changes first
● Prefer rebase over merge, avoids ugly commitLocal ~mytest$ branch, edit, commit

Local ~mytest$ git push origin master
To ssh://git@gitlab.foobar.de/test/training.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to
'ssh://git@gitlab.foobar.de/test/training.git'
hint: Updates were rejected because the remote contains work that you
do not have locally. This is usually caused by another repository
pushing to the same ref. You may want to first integrate the remote
changes (e.g., 'git pull ...') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.
Local ~mytest$ git log
* 3fc556d (HEAD, master) New text
* ba74a5a (origin/master) Merge branch 'michael'
|\
| * bd8bf6e Micha branch
* | 57cdc9a Code addded
|/

70git – the incomplete introduction

git pull --rebase

● You have not shared the commit, so rebase for
clean history with the remote content.

● See, no non-sense merge!

Local ~mytest$ git log
* 3fc556d (HEAD, master) New text
* ba74a5a (origin/master) Merge branch 'michael'
...
Local ~mytest$ git pull --rebase origin master
...
First, rewinding head to replay your work on top of it...
Applying: New text
Local ~mytest$ git log
* 85f62f6 (HEAD, master) New text
* c2e9a1a (origin/master) One more thing added
* ba74a5a Merge branch 'michael'
|\
| * bd8bf6e Micha branch
...

71git – the incomplete introduction

git pull – the ugly merge

● By default you get a merge when you have local
changes

Local ~mytest$ git log
* 2272ff5 (HEAD, master) No stuff anymore
* f5d6db1 (origin/master) Entry 10
* fd4fdd7 Entry 9
Local ~mytest$ git pull origin master
...
From ssh://gitlab.foobar.de/asdf/traning
 * branch master -> FETCH_HEAD
 f5d6db1..d39a17e master -> origin/master
Merge made by the 'recursive' strategy.
 asdf.txt | 0
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 asdf.tct
Local ~mytest$ git log
* d1247b3 (HEAD, master) Merge branch 'master' of ssh://gitlab.foobar.de...
|\
| * d39a17e (origin/master) New file
* | 2272ff5 No stuff anymore
|/
* f5d6db1 Entry 10

git – the incomplete introduction

A small shared
workflow

Just you, git, and other dudes or dudettes.

73git – the incomplete introduction

Let me flow alone
get the master latest changes
Local ~(master)$ git pull --rebase origin master
create a new branch with a meaningful name and switch
Local ~(master)$ git checkout -b jaropener-4210
do some development
Local ~(jaropener-4210)$ git add File.java; git commit -m “base class”
Local ~(jaropener-4210)$ git add .; git commit -m “tests added”
switch to master
Local ~(jaropener-4210)$ git checkout master
get the latest master changes, no local changes assumed
Local ~(master)$ git pull --rebase origin master
switch to branch
Local ~(master)$ git checkout jaropener-4210
rebase branch against master, assuming you have not pushed your branch!
Local ~(jaropener-4210)$ git rebase master
switch to master
Local ~(jaropener-4210)$ git checkout master
merge the branch in without fast-forward to get a single commit
Local ~(master)$ git merge --no-ff jaropener-4210
delete the branch now, you merged it!
Local ~(master)$ git branch -d jaropener-4210
refresh your master, no further local changes
Local ~(master)$ git pull --rebase origin master
push your work and be happy
Local ~(master)$ git push origin master

git – the incomplete introduction

Merge vs. Rebase
The common misunderstanding

75git – the incomplete introduction

But SVN...

● SVN does not have a rebase
● Server counts up and each commit gets a number
● What is merged ends in mergeinfo properties

● Git uses a cryptographic hash to protect content
● Includes the parents in that aka new parent, new

hash
● It is non-linear but linear... confused?
● Git forms a chain of content

76git – the incomplete introduction

Rebase vs. Merge

● Rebase
● Makes your work latest
● Set's your work aside, updates branch, puts your work

on top of it, so your work wins mostly
● Removes all your commits and creates them new
● Bad when already shared

● Merge
● Fits your work into the timeline
● Uses the timeline to figure out who is right
● Creates a commit with the merge content

77git – the incomplete introduction

Local rebase and merge visualized

HEAD

aa 1245aab ccbb master

aa 1245aab ddbb mybranch

aa 1245aab ccbb master

dddd

git rebase master

aa 1245aabbb mybranch

HEAD

cc

aa 1245aab ccbb master

git merge --no-ff mybranch

ff

HEAD

ee

eeee

eeeedddd

78git – the incomplete introduction

Rebase from remote visualized
HEAD

a54341b 1245aab c3dffd1 19ab4dda54341b master

a54341b 1245aab c3dffd1 561abcda54341b origin/master

a54341b 1245aab c3dffd1 561abcda54341b master61b48aa

git pull --rebase origin master

a54341b 1245aab c3dffd1 561abcda54341b

origin/master

git push origin master

a54341b 1245aab c3dffd1 561abcda54341b 61b48aa

origin/master

a54341b 1245aab c3dffd1 561abcda54341b master61b48aa

HEAD

HEAD

79git – the incomplete introduction

Remote merge visualized

a54341b 1245aab c3dffd1 19ab4dda54341b master

a54341b 1245aab c3dffd1 561abcda54341b origin/master

a54341b 1245aab c3dffd1a54341b master

git pull origin master

a54341b 1245aab c3dffd1 561abcda54341b origin/master

561abcd

a54341b 1245aab c3dffd1a54341b master

git push origin master

a54341b 1245aab c3dffd1a54341b origin/master

561abcd

561abcd

981715a

19ab4dd 981715a

19ab4dd 981715a

19ab4dd

HEAD

HEAD

HEAD

80git – the incomplete introduction

When to rebase

● When you cannot push because someone was
faster: git pull --rebase

● When you have not shared anything and want to
have a clean branch and solve the possible merge
conflicts before merging

● When you do not care about your base

81git – the incomplete introduction

When rebase becomes evil

● When you shared commits already
● When you branch off of the to-be-rebased branch

aka you shared you commit with yourself already
● When you already merged in from other branches
● Do not forget, squashing means rewriting too

Rebasing means rewriting of commits!

82git – the incomplete introduction

Merge/no-ff/squash?

git – the incomplete introduction

Misc
Does not fit anywhere else

84git – the incomplete introduction

Some other stuff

● Force branch delete: git branch -D name
● Remote delete: git push origin :name
● Stash things away: git stash save
● Get things back: git stash apply
● Remove stash: git stash drop
● Clean up after merge: git clean -f -d

85git – the incomplete introduction

Golden git advantages to use

● Always branch
● Commit often
● Not sure about a merge? New branch and try
● Rebase your branch before merge, if not shared
● Do not run anything advanced, there is barely any

reason for doing that
● Keep it simple!

git – the incomplete introduction

Tools
In case you don't like the command line

88git – the incomplete introduction

Tools - tig

89git – the incomplete introduction

Tools - gitk

90git – the incomplete introduction

A list of tools

● GitEye
● SmartGit
● TortoiseGit
● EGit for Eclipse

91git – the incomplete introduction

git blame

Q & A
Your moment to ask questions, to show off, to blame

us for wasted life time, blame git, or blame Linus.

92git – the incomplete introduction

git resources

● Atlassian's Git Pages
● https://www.atlassian.com/git

● The official web page
● http://git-scm.com/

● Stuff about Git
● http://gitready.com/

93git – the incomplete introduction

Sources used
● http://git-scm.com/

● http://gitready.com/

● https://www.atlassian.com/git

● Subversion DB: http://commons.wikimedia.org/wiki/File:Database-vcs-subversion.svg (CC-BY-SA)

● Creative Commons icons: http://creativecommons.org/about/downloads (CC-BY)

https://www.atlassian.com/git
http://git-scm.com/
http://gitready.com/

94git – the incomplete introduction

License

● Use these slides freely
● Share them freely
● Modify them freely but share them again

Creative Commons Attribution-ShareAlike 3.0
Unported License

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

http://gitready.com/
http://commons.wikimedia.org/wiki/File:Database-vcs-subversion.svg
http://creativecommons.org/about/downloads

